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BACKGROUND: Environmental factors can influence the house dust microbiota, which may impact health outcomes. Little is known about how farming 
exposures impact the indoor microbiota. 
OBJECTIVE: We aimed to identify exposures related to bacterial communities in house dust in a U.S. farming population. 
METHODS: We used 16S rRNA amplicon sequencing to characterize bacterial communities in vacuumed dust samples from the bedrooms of a subset 
of 879 households of farmers and farmers’ spouses enrolled in the Agricultural Lung Health Study (ALHS), a case–control study of asthma nested 
within the Agricultural Health Study (AHS) in North Carolina and Iowa. Information on current farming (past 12 mo), including both crop and animal 
farming, and other potential microbial sources was obtained via questionnaires. We used linear regression to evaluate associations between exposures 
and bacterial diversity within each sample, analysis of similarity (ANOSIM), and permutational multivariate analysis of variance (PERMANOVA) to 
identify exposures related to diversity between samples, and analysis of composition of microbiome to examine whether exposures related to diversity 
were also related to differential abundance of specific operational taxonomic units (OTUs). 
RESULTS: Current farming was positively associated with bacterial diversity in house dust, with or without adjustment for nonfarm exposures related to diver-
sity, including presence of indoor pets, home condition, and season of dust collection. Many taxa exhibited differential abundance related to farming. Some 
taxa in the phyla Chloroflexi and Verrucomicrobia were associated [false discovery rate ðFDRÞ< 0:05] with farming but not with other nonfarm factors. 
Many taxa correlated with the concentration of house dust of endotoxin, commonly studied as a general marker of exposure to the farming environment. 
CONCLUSIONS: In this farming population, house dust microbiota differed by current farming status. Understanding the determinants of the indoor 
microbiota is the first step toward understanding potential relationships with health outcomes. https://doi.org/10.1289/EHP3145 

Introduction 
House dust contains a wide range of microorganisms. The house 
dust microbiota is influenced by environmental factors and, in turn, 
can impact human health (Ownby et al. 2002; von Mutius and 
Vercelli 2010). Understanding the determinants of the indoor dust 
microbiota is necessary before examining potential associations 
with health outcomes. In general populations, factors known to be 
associated with bacterial communities include the presence of 
indoor pets and the number of occupants (Barberán et al. 2015; 
Dannemiller et al. 2016). Although farming populations have 
unique microbial exposures, few studies have explored the deter-
minants of the microbiota in these settings. In a recent study of 86 
children, farm exposures were associated with bacterial commun-
ities of dust inside homes (Birzele et al. 2017). There have been no 
large-scale studies exploring determinants of the house dust micro-
biota in a farming population. 

Endotoxin is a proxy measure of bacteria exposure that consists 
of lipopolysaccharide found in the outer membrane of Gram- 
negative bacteria. Studies have measured endotoxin concentrations 
in house dust and identified associations with various health end-
points (Liebers et al. 2008). Studies in farming populations, con-
ducted mostly in European countries, have reported that the presence 
of pets, living on a farm, cleanliness, geographical region, and season 
(Chen et al. 2012; Dassonville et al. 2008; Giovannangelo et al. 
2007; Holst et al. 2015) are associated with endotoxin concentration 
in house dust. However, no studies have examined how house dust 
endotoxin relates to specific bacterial taxa. 

We hypothesized that current farming, defined as working with 
crops or animals during the past 12 mo, influences the microbiota 
inside homes. We examined associations between environmental 
exposures and bacterial communities in bedroom dust from 879 
independent households in the Agricultural Lung Health Study 
(ALHS), a study of farmers and farmers’ spouses in North Carolina 
and Iowa. We evaluated bacterial diversity in association with farm 
exposures (such as living on a farm, current farming, and types of 
farming) and nonfarm exposures (such as demographic characteris-
tics, presence of indoor pets, and home condition) among the study 
population. For exposures associated with bacterial diversity, we 
identified specific operational taxonomic units (OTUs) that showed 
differential abundance according to these exposures. In addition, we 
examined associations of house dust endotoxin with bacterial diver-
sity and with relative abundance of OTUs. 

Methods 
Study Population 
The ALHS is a case–control study of adult asthma nested within the 
Agricultural Health Study (AHS), a prospective cohort of licensed 
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pesticide applicators (n = 52,394 private applicators), mostly farm-
ers and their spouses (n = 32,345) enrolled from 1993 to 1997 in 
North Carolina and Iowa (Alavanja et al. 1996). The farmers in the 
study are individuals who reported their occupation as a farmer on 
the initial enrollment questionnaire. Details of ALHS subject selec-
tion have been previously described (Carnes et al. 2017; House et al. 
2017). In brief, potential ALHS participants were identified from 
among the 44,130 respondents (24,171 farmers and 19,959 spouses) 
to the AHS follow-up questionnaire administered by phone from 
2005 to 2010 (data version P3REL201209.00) based on responses 
to questions about asthma diagnosis and symptoms. A total of 3,301 
participants were enrolled in the ALHS (1,223 with asthma, 
response rate = 51:7% and 2,078 noncases, response rate = 50:0%). 
As previously described (House et al. 2017), we used three defini-
tions of asthma to avoid missing undiagnosed asthmatics. Most en-
rolled cases (n = 876) responded “yes” to the two questions: “Have 
you ever been diagnosed with asthma?” and “Do you still have 
asthma?” and “no” to the following two questions: “Have you ever 
been diagnosed with chronic obstructive pulmonary disease 
(COPD)?” and “Have you ever been diagnosed with emphysema?” 
We also identified never smoking (n = 263) or minimal past smok-
ing (≤10 pack-years, n = 46) cases of likely undiagnosed asthma 
(total = 309) based on report of current asthma symptoms and use of 
asthma medications and “no” to the above questions regarding diag-
nosis of either COPD or emphysema. Further, because asthma and 
COPD can coexist, we also enrolled 38 subjects reporting current 
asthma and prior diagnosis of either COPD or emphysema as long 
as they were never-smokers (n = 28) or past-smokers (≤10 pack- 
years, n = 10). Noncases were randomly chosen from among indi-
viduals not categorized as cases. 

Of the 3,301 participants, 2,871 received a home visit at which 
bedroom dust was collected. For 2,692 of these, dust was sufficient 

for endotoxin measurement. We sent a random sample (n = 1,000 
out of 2,692, including 372 asthma cases) for measurement of 
house dust microbiota. Workflow of the study including selection 
criteria, and number of samples can be found in Figure 1. 

The study was approved by the Institutional Review Board at 
the National Institute of Environmental Health Sciences. Written 
informed consent was obtained from all participants. 

A dust sample was collected from the bedroom by a trained 
field technician during the home visit as previously described 
(Carnes et al. 2017). We used a DUSTREAM® Collector (Indoor 
Biotechnologies, Inc.) to vacuum a 1-yd2 (0:84-m2) area on the 
sleeping surface and on the floor next to the bed for 2 min in each 
area. Dust samples were sent to Social & Scientific Systems, Inc. to 
be sieved, weighted into aliquots of 50 mg, and frozen at −20�C. 

Dust samples were extracted and endotoxin was measured 
using the Limulus amebocyte lysate assay (Lonza Walkersville, 
Inc.) at the University of Iowa (Thorne et al. 2005; Thorne et al. 
2015; Vojta et al. 2002). Reagents from a single lot were used in 
all assays, each of which also included low- and high-endotoxin 
quality control house dust samples. Values below the limit of 
detection (LOD) [0.00048 endotoxin units (EU)/mg, n = 2 of 
879] were assigned to LOD divided by the square root of two 
(0.00034) (Carnes et al. 2017). 

DNA Isolation and 16S rRNA Amplicon Sequencing 
Samples were randomized before processing. DNA was isolated 
using the Mo Bio 96 well plate PowerSoil DNA extraction kit 
(QIAGEN, Inc.). The DNA isolation protocol was applied as rec-
ommended by the manufacturer with the following modifications: 
approximately 0:3–0:5 g of each sample were loaded into each 
well of the PowerSoil bead beating plate. Samples were incubated 

Figure 1. Workflow of our house dust microbiome study. This workflow includes a summary of sample selection from the Agricultural Lung Health Study (ALHS) 
(n = 3,301) to the house dust microbiome study (n = 879). It shows association analyses used in this paper: bacterial diversity analysis for both environmental exposures 
and endotoxin concentration, differential abundance analysis for environmental exposures, and differential relative abundance analysis for endotoxin.  
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in PowerSoil bead solution and buffer C1 at 70°C for 20 min 
before bead beating to aid in lysis of spores, and 50 lL of 
elution buffer C6 was used. Then, post-DNA extraction, each 
sample was quantified using the NanoDrop™ (A260) (Thermo 
Fisher Scientific Inc.) and normalized to 5 ng=lL DNA per sample 
before PCR amplification of V3–V4 region of the 16S rRNA gene. 

DNA was amplified using primers targeting the V3–V4 region 
of the bacterial 16S rRNA gene and overhang adapter sequences 
appended to the primer pair for compatibility with Illumina index 
and sequencing adapters. The complete sequences of the primers 
were: F–5 0 GTGCCAGCAGCCGCGGTAA-3 0 and R–5 0 GTCT 
CGTGGGCTCGGAGATGTGTATAAGAGACAGGGACTAC 
HVGGGTWTCTAAT-30. Master mixes contained 12:5 ng of total 
DNA and 2X KAPA HiFi HotStart ReadyMix (KAPA Biosystems, 
Inc.). The thermal profile for the amplification of each sample had 
an initial denaturing step at 90°C for 3 min, followed by a cycling of 
denaturing of 95°C for 30 s, annealing at 55°C for 30 s and a 30-s 
extension at 72°C (25 cycles), a 5-min extension at 72°C, and a final 
hold at 4°C. Each 16S amplicon was purified using AMPure XP rea-
gent (Beckman Coulter, Inc.). In the next step, each sample was 
amplified using a limited cycle PCR program, adding Illumina 
sequencing adapters and dual-index barcodes [index 1(i7) and index 
2(i5)] (Illumina) to the amplicon target. For the second round of 
amplification, the thermal profile consisted of an initial denaturing 
step at 95°C for 3 min, followed by a denaturing cycle of 95°C 
for 30 s, annealing at 55°C for 30 s and a 30 s extension at 72°C 
(8 cycles), and 5-min extension at 72°C. The final libraries were 
again purified using AMPure XP reagent (Beckman Coulter, Inc.), 
quantified, and normalized before pooling. The DNA library pool 
was then denatured with NaOH, diluted with hybridization buffer, 
and heat denatured before loading on the MiSeq reagent cartridge 
(Illumina) and on the MiSeq instrument (Illumina). Automated clus-
ter generation and paired-end sequencing with dual reads were per-
formed per manufacturer’s instructions. 

Preprocessing of sequencing reads included paired-end joining, 
demultiplexing, and quality filtering using Illumina software and 
fastq-join. Paired-end fastq files were generated from the sequenc-
ing results of an Illumina MiSeq using configureBclToFastq. The 
paired-end fastqs were joined into a single multiplexed, single-end 
fastq using the software tool fastq-join. Demultiplexing and quality 
filtering were performed on the joined results. Quality control 
reports were produced using the software FastQC (FastQC ver-
sion 0.11.2). Measurements were made by the Microbiome Core 
Facility at the University of North Carolina. 

To generate bacterial community information from filtered 
sequencing data, we used Quantitative Insights Into Microbial 
Ecology (QIIME; version 1.9.1) (Caporaso et al. 2010b). De novo 
OTU picking was performed using the script pick_de_novo_ 
otus.py with UCLUST (Edgar 2010), the default OTU clustering 
algorithm. To remove chimeric sequences, we used identify_ 
chimeric_seqs.py to run ChimeraSlayer (Haas et al. 2011) after 
aligning sequences using align_seqs.py with PyNAST (Caporaso 
et al. 2010a), the default alignment method. Assign_taxonomy. 
py with the Greengenes database (version 13_5; greengenes. 
secondgenome.com) was used to assign taxonomy to each sequence. 
A phylogenetic tree was constructed using make_phylogeny.py with 
FastTree (Price et al. 2009); the default phylogeny construction algo-
rithm. OTUs were assigned into seven taxonomic levels: kingdom, 
phylum, class, order, family, genus, and species. 

Quality filtering criteria for the OTU data included (a) exclu-
sion of samples having <10,000 sequencing depth (Barberán et al. 
2015), and (b) removal of chimeric sequences and OTUs having 
<0:005% of the total number of sequence reads (Bokulich et al. 
2013; Navas-Molina et al. 2013). During the filtering, 80 samples 
and 604,569 OTUs were excluded after removal of 83,546 OTUs 

of chimeric sequences. For 41 homes where two dust samples 
were collected because both the farmer and their spouse partici-
pated in the study at different time points, we chose the record 
from the farmer for further analyses so that all samples were in-
dependent. These exclusions left 879 samples (including 333 
asthma cases and 546 noncases) for statistical analysis. 

Environmental and Other Factors 
We examined demographic, home condition, and environmental 
factors assessed at the home visit in relation to the indoor dust 
microbiota. Demographic factors included state of residence 
(North Carolina vs. Iowa) and gender. We assessed the presence 
of indoor pets in the past 12 mo (dogs or cats) by participant 
questionnaires. The home condition was rated by field technicians 
at the time of the visit using a five-point scale used in an earlier 
home allergen study (Arbes et al. 2003). The five categories 
were: (a) “Extremely Poor: lack of organization,” (b) “Poor,” 
(c) “Average: clean with moderate clutter,” (d) “Above Average,” 
and (e) “Good: organized, clean all over.” We dichotomized 
responses into lower (levels 1–2) or higher home condition (levels 
3–5). Because not all farmers or spouses of farmers are currently 
farming, we used questionnaire data to classify them with regard to 
current farm exposures. Subjects who responded “yes” to “Do you 
currently live on a farm?” were classified as living on a farm. 
Individuals who responded “yes” to “In the past year, have you 
worked with soybeans or grains?” were classified as currently crop 
farming. Individuals who responded “yes” to “In the past year, 
have you worked with any farm animals?” were classified as cur-
rently animal farming. Individuals who responded “yes” to this 
question were further asked, “In the past 12 mo, have you worked 
with (a) dairy cattle, (b) beef cattle, (c) hogs, (d) chicken or turkeys, 
and (e) other farm animals?” We defined current farming by either 
crop or animal farming. We combined information on current crop 
and animal farming to create a four-category variable: neither crop 
nor animal farming (reference category), crop farming only, ani-
mal farming only, or both crop and animal farming. Additionally, 
we calculated the number of types of farm animals (beef or dairy 
cattle, hogs, or poultry) that individuals worked with, and catego-
rized it into three groups: 0 type, 1 type, and 2 + types. Season of 
dust collection (spring, summer, fall, winter) was generated based 
on the date of the home visit: March 21–June 20 for spring, June 
21–September 20 for summer, September 21–December 20 for 
fall, and December 21–March 20 for winter. 

Given that the study participants were randomly sampled from 
a nested case–control study of asthma, we also considered whether 
asthma status was related to the indoor dust microbiota. 

Given that one of potential factors reported to be associated with 
the endotoxin is carpeting, we also examined whether carpeting was 
associated with bacterial communities and endotoxin levels in the 
house dust microbiota. The carpeting variable was obtained via 
questionnaire completed by the technician who collected the dust 
sample, and dichotomized into two categories: carpeted surface vs. 
smooth floor (no carpeted or no carpet sampled group). 

Association Analyses 
In association analyses both for microbial communities and endo-
toxin, we considered farm exposures, such as living on a farm, crop 
farming, and animal farming, and nonfarm exposures, such as state 
of residence, gender of study participants, presence of indoor pets, 
and home condition, unless noted otherwise. Each exposure was 
treated as a binary variable, comparing exposed to unexposed (for 
example: presence of indoor pets vs. no indoor pets, higher vs. 
lower home condition, crop farming vs. no crop farming, animal 
farming vs. no animal farming) unless stated otherwise. Regarding 
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season of dust collection, we compared one season vs. all other sea-
sons combined (for example, spring vs. summer, fall, and winter 
combined; summer vs. spring, fall, and winter combined) unless 
stated otherwise. 

State of residence was related to current farm exposures such 
as living on a farm, crop farming, and animal farming. Instead of 
adjusting for state, we performed a stratified analysis. 

Bacterial diversity analysis using rarefied operational taxo-
nomic unit data. For bacterial diversity within each sample (alpha 
diversity), we calculated the Shannon index (Shannon 1948), 
which reflects both the number of species and the distribution of 
the relative abundance of each species. We used linear regression 
to evaluate associations between exposures and this diversity 
measure. We also evaluated associations between farm exposures 
and diversity after adjusting for nonfarm exposures significantly 
associated with diversity in univariate analyses (p-value <0:05) 
by adding the nonfarm exposures as covariates in linear regres-
sion models. To assess associations of number of types of farm 
animals with diversity, we evaluated a linear trend between diver-
sity and the ordered categories of 0, 1, or 2 + types by assigning 
scores of 1, 2, or 3 to those categories. The t-test associated with 
the linear term provided the test for trend. 

Additionally, we have examined associations of bacterial (alpha) 
diversity with other factors that can be factors of interest to be consid-
ered in our study: asthma status and carpeting. As asthma status was 
the selection factor in the ALHS, we tested associations between 
asthma and bacterial communities with the Shannon index in linear 
regression with asthma status as the predictor and the bacterial diver-
sity as the response variable. We also examined whether adjusting for 
asthma status with the other covariates changed the results. For car-
peting with respect to associations with the bacterial diversity, we 
used linear regression with the carpeting variable as the predictor and 
the diversity index as the response variable. 

To test whether bacterial community compositions between 
samples (beta diversity) differed across exposure levels, we used 
two different methods. One method was analysis of similarity 
(ANOSIM) (Clarke 1993) with the Bray-Curtis (BC) dissimilarity 
(Bray and Curtis 1957) metric; ANOSIM generates a statistic 
(denoted R) that ranges from 0 (no separation) to 1 (complete sepa-
ration). The second method was permutational multivariate analy-
sis of variance (PERMANOVA) (Anderson 2001) with the unique 
fraction (UniFrac) metric (Lozupone and Knight 2005), a measure 
of the phylogenetic distance among OTUs in a phylogenetic tree. 
PERMANOVA generates a statistic-denoted R2 explanatory power, 
which estimates how much variability can be explained by an ex-
posure. We used both weighted, taking abundances of OTUs into 
account, and unweighted UniFrac. The number of permutations 
was 999 for both ANOSIM and PERMANOVA. 

To avoid any bias due to different sequencing depth among 
samples, the data were rarefied to the minimum number of sequen-
ces (n = 8,182) across samples for diversity analyses. We used R 
(version 3.2.4; R Development Core Team) to summarize charac-
teristics of the study population and perform the diversity analyses. 
We used functions including diversity, vegdist, anosim, and adonis 
in R package vegan (version 2.4.3; R Development Core Team) 
for computing the Shannon index, the BC dissimilarity metric, 
ANOSIM, and PERMANOVA, respectively. We used UniFracs in 
R package phyloseq (version 1.19.1; R Development Core Team). 
(McMurdie and Holmes 2013) for the UniFrac phylogenetic dis-
tance metric. We set a threshold of p-value <0:05 for statistical sig-
nificance for the diversity analyses. 

Inference about abundance using un-rarefied operational 
taxonomic unit data. To identify OTUs whose abundances differ 
significantly by exposure levels, we applied the analysis of com-
position of microbiomes (ANCOM) (Mandal et al. 2015) to 

unrarefied data because ANCOM’s log-ratio approach accounts 
for variation in sequencing depth across samples. For both non-
farm and farm exposures, exposure was the predictor and the 
abundances the response variable. To identify OTUs significantly 
associated with current farming after adjusting for the nonfarm 
factors significantly associated with bacterial communities in the 
diversity analysis, we included the nonfarm factors as covariates 
in the models. We also examined differential abundance accord-
ing to the four-level current farming (neither crop nor animal 
farming, crop farming only, animal farming only, and both crop 
and animal farming) by using the four-level variable as the pre-
dictor and the abundance as the response variable in ANCOM. 
To correct for multiple testing, we set the false discovery rate 
(FDR) to 0.05. We summarized the number of OTUs with 
FDR <0:05 at the phylum level. When a family includes at least 
two OTUs whose abundances significantly uniquely differed by 
either crop or animal farming, we calculated relative abundances 
at the family level. 

Endotoxin in relation to environmental factors and bacterial 
diversity using rarified data. We examined the relationship of house 
dust endotoxin with both farm and nonfarm exposures using linear 
regression with exposure as the predictor and log10-transformed en-
dotoxin levels as the response variable. To evaluate associations 
between farm exposures and the endotoxin levels after adjusting for 
nonfarm exposures significantly associated with the endotoxin in 
univariate analyses (p-value <0:05), we added the nonfarm expo-
sures as covariates in linear regression models. In this analysis of 
environmental factors in relation to endotoxin levels, we also tested 
whether carpeting status (carpeted surface vs. smooth floor) was 
associated with the endotoxin levels by using linear regression. We 
used the carpeting variable as the predictor and the endotoxin levels 
as the response variable. 

To evaluate associations between bacterial diversity (the 
Shannon index) and endotoxin, we created ordered categories 
based on endotoxin quartiles. We used linear regression with diver-
sity as the response variable and with indicator variables for each 
endotoxin category as predictors (lowest quartile as reference). We 
tested for linear trend using a score variable whose value was 1, 2, 
3, or 4 for endotoxin levels in the first through fourth quartile cate-
gories. The t-test associated with the linear term provided the test 
for trend. 

Endotoxin in relation to relative abundance using unrare-
fied operational taxonomic unit data. We examined positive or 
negative trends in OTU-specific relative abundance across endo-
toxin quartiles. For each OTU, after correcting for the differential 
sequencing depth across samples (see below for details), we tested 
whether its relative abundance significantly increased (mean rela-
tive abundance in quartile 1 ≤ mean relative abundance in quartile 
2 ≤ mean relative abundance in quartile 3 ≤ mean relative abun-
dance in quartile 4) or decreased (mean relative abundance in quar-
tile 1 ≥ mean relative abundance in quartile 2 ≥ mean relative 
abundance in quartile 3 ≥ mean relative abundance in quartile 4) 
over endotoxin quartiles. We used the software ORIOGEN (order- 
restricted inference for ordered gene expression) version 4.01 at an 
FDR threshold of 0.05 for performing these analyses (Peddada et al. 
2005). 

OTU counts were normalized to account for variations in 
sequencing depth. For this OTU-level analysis, raw OTU counts 
were transformed to account for within-sample and between- 
sample variations in sequencing depth. The normalized counts can 
be regarded as estimates of the relative abundance of the OTU in a 
sample; we refer to the normalized counts as relative abundance. 

Cijk denotes the raw count for the ith OTU in the jth sample of the 
kth exposure group (e.g., endotoxin quartiles ranging from 1 to 4). 
We add 1 to each count to accommodate ln transformation of 
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possibly zero counts and take the average of the ln-transformed 
counts across all OTUs in a sample and exposure group. T 0�jk denotes 
that sample and exposure group–specific average of ln-transformed 
values, which can be expressed in symbols as: 

T
0

�jk =
1
N
XN

i = 1
ln Cijk + 1ð Þ:

Thus, T 0�jk is the ln-transformed geometric mean of the Cijk + 1 
for all OTUs in the sample and exposure group. We further average 
these averages across all the samples in an exposure group, namely, 

T
0

��k =
1
nk

Xnk

j = 1
T
0

�jk:

Then we define the transformed count for OTU i in sample j 
and exposure group k as: 

C
0

ijk = lnðCijk + 1Þ− ½T
0

�jk − T
0

��k�:

The term in square brackets can be regarded as a ln-transformed 
adjusted geometric mean count for the sample and exposure group. 
The result of subtracting the ln-transformed adjusted geometric 
mean count from the ln-transformed raw count is a ln-transformed 
ratio: raw count divided by adjusted geometric mean count. In this 
sense, the transformed count C0ijk can be interpreted as assessing a 
ln-transformed relative abundance for the ith OTU in the jth sample 
of the kth exposure group. 

Results 
Association analyses included dust samples from 879 independ-
ent homes from North Carolina (32%) and Iowa (68%). Participants 
were either farmers (532, 97% male) or the spouse of a farmer (347) 
(Table 1). Of the 532 farmers, 171 (158 males and 13 females) were 
from North Carolina, and 361 (358 males and three females) were 
from Iowa. Of the 347 spouses of farmers, one was male, and the 
remaining were female spouses. Of the 532 farmers, 462 were mar-
ried, and 2 were living as married. Participants were 62 y old on av-
erage at the home visit. Indoor pets (dogs or cats) were present in 
42% of homes. Most homes (78%) were rated in the higher of the 
two home condition categories by the field technician. Participants 
reported living on a farm (83%), crop farming in the past 12 mo 
(55%), and animal farming in the past 12 mo (50%). For the com-
bined crop or animal current farming variable, 35% of participants 
reported that they were not currently farming, 15% reported crop 
farming only, 10% reported animal farming only, and 40% reported 
both crop and animal farming. Of the 305 participants who were not 
currently farming (neither crop nor animal), 214 were female, and 
91 were male. Of the 214, 205 were spouses of farmers, and 9 were 
farmers. The 91 males were all farmers. The geometric mean endo-
toxin level in house dust was 38.4 EU/mg (median, 51.0 EU/mg; 
minimum, 0.00034 EU/mg; 25th percentile, 24.5 EU/mg; 75th per-
centile, 84.4 EU/mg; and maximum 1,170 EU/mg). There were 333 
current asthma cases in our study: 99 from North Carolina and 234 
from Iowa. Of the 333, 178 (50 from North Carolina and 128 from 
Iowa) were farmers, and 155 (49 from North Carolina and 106 from 
Iowa) were spouses of farmers. 

After quality filtering on the sequencing depth, the total number 
of sequences across all samples was 72,865,099. The number of 
sequences per sample ranged from 8,182 to 448,744 (mean = 82,895; 
median = 73,708). Of all OTUs across all samples, 73% had nonzero 
counts. Based on 97% sequence similarity, there were 1,385 OTUs 
for association analyses. Of these, at the taxonomic level of kingdom, 
1,346 OTUs were assigned to Bacteria, seven to Archaea, and 32 

were unassigned. The number of unassigned OTUs in each taxo-
nomic level were 32 (2.3%) for phylum, 35 (2.5%) for class, 56 
(4.0%) for order, 198 (14.3%) for family, 656 (47.4%) for genus, and 
1,287 (92.9%) for species. 

With respect to asthma status, the selection factor in the ALHS, 
we evaluated association of the disease status with bacterial commun-
ities. No association was observed between asthma and our measure 
of bacterial diversity, Shannon index: mean Shannon index = 4:58 
for both cases and noncases, and p for difference = 0:99. Although 
asthma status was clearly not related to diversity, we additionally veri-
fied that adding asthma to the models with the other covariates did not 
change the results. For example, for living on a farm, p = 0:525 before 
and p = 0:526 after adjustment; for crop farming, p = 0:006 before 
and 0.006 after adjustment; and for animal farming, p = 3:4 × 10−5 

before and p = 3:5 × 10−5 after adjustment. Therefore, we did not 
include asthma status in further analyses. 

Several environmental factors were significantly associated 
with alpha diversity. Higher Shannon index (one metric of alpha 
diversity), reflecting both the number of species and their relative 
abundance, was associated with residence in Iowa (as opposed to 
North Carolina), presence of an indoor dog, crop and animal farm-
ing, and winter (vs. other seasons combined). Lower Shannon 
index was related to home condition rated in the higher category 
(Table 2). Significantly higher diversity was observed in homes of 
individuals working with beef cattle, dairy cattle, or poultry com-
pared to those not working with these animals. Further, the number 
of types of farm animals (beef or dairy cattle, hogs, or poultry) that 
individuals worked with was positively related to Shannon index 
[mean index ± standard deviation ðSDÞ for 0 type = 4:50 ± 0:76, 
for 1 type = 4:66 ± 0:72, and for 2 + types = 4:71 ± 0:73; p-value 
for linear trend = 0:003]. When we performed stratified analyses 
by state of residence (North Carolina or Iowa), these patterns were 
similar in both, but given the larger sample size in Iowa (n = 596), 
results for Iowa tended to be more highly statistically significant 
than those for North Carolina (n = 283) (Table S1). After we 
adjusted for presence of an indoor dog, home condition, and win-
ter, the associations between alpha diversity measure (Shannon 
index) and current farming remained significant (Table S2). 

For beta diversity (measure of between-sample difference), 
when we assessed differences between demographic or exposure 
groups based on BC dissimilarity, we observed differences for state 
of residence, presence of indoor pets, current crop farming, current 
animal farming, and season of dust collection (spring vs. other sea-
sons combined) (Table S3). The measures of group separation (R 
statistics ranging from 0 for no separation to 1 for complete separa-
tion) were small but statistically significant (p-value <0:01). R val-
ues for the state of residence (0.128) and animal farming (0.055) 
were relatively greater than those for other factors: 0.016 for pres-
ence of indoor pets, 0.044 for season of dust collection (spring vs. 
other seasons combined), and 0.038 for current crop farming. When 
we assessed beta diversity by differences between groups based on 
phylogenetic distances (weighted UniFrac), microbial communities 
were significantly different by most factors: state of residence, gen-
der, presence of indoor pets, home condition, current farming, and 
season of dust collection (Table S4). Of note, we observed relatively 
greater values of R2 for state of residence (R2 = 0:028 from weighted 
approach; R2 = 0:043 from unweighted approach) and for animal 
farming (R2 = 0:012 from weighted approach; R2 = 0:019 for 
unweighted approach) compared to those for other variables ranging 
between 0.002 and 0.014 from either of the approaches. Of total vari-
ability of bacterial communities in house dust, 3% or 4% can be 
explained by the state of residence and 1% or 2% by the animal farm-
ing exposure. Largely, analyses with unweighted UniFrac showed 
similar results but with slightly greater R2 values compared to those 
with UniFrac weighted by OTU count (Table S4). 
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Table 1. Characteristics of the study participants. 
Characteristics, n (%)a North Carolina (n = 283) Iowa (n = 596) Total (n = 879)   
Farmer or spouse at the time of AHS enrollment    

Farmer 171 (60.4) 361 (60.6) 532 (60.5) 
Spouse of farmer 112 (39.6) 235 (39.4) 347 (39.5) 

Gender    
Male 159 (56.2) 358 (60.1) 517 (58.8) 
Female 124 (43.8) 238 (39.9) 362 (41.2) 

Age, years (mean ± SD) 63 ± 11 61 ± 11 62 ± 11 
Endotoxinb, EU/mg [geometric mean(SE)] 31.77 (0.29) 42.04 (0.14) 38.42 (0.14) 
Presence of indoor pets – past 12 months    

Dogs or cats    
Yes 131 (46.3) 240 (40.3) 371 (42.2) 
No 152 (53.7) 356 (59.7) 508 (57.8) 

Dogs    
Yes 103 (36.4) 167 (28.0) 270 (30.7) 
No 180 (63.6) 429 (72.0) 609 (69.3) 

Cats    
Yes 55 (19.4) 127 (21.3) 182 (20.7) 
No 228 (80.6) 469 (78.7) 697 (79.3) 

Home conditionc    

Higher 208 (74.0) 474 (79.5) 682 (77.8) 
Lower 73 (26.0) 122 (20.5) 195 (22.2) 

Carpetingd    

Carpeted surface 257 (91.1) 563 (94.6) 820 (93.5) 
Smooth floor 25 (8.9) 32 (5.4) 57 (6.5) 

Currente farm exposure    
Living on a farm    

Yes 220 (77.7) 507 (85.1) 727 (82.7) 
No 63 (22.3) 89 (14.9) 152 (17.3) 

Crop farming    
Yes 94 (33.2) 386 (64.8) 480 (54.6) 
No 189 (66.8) 210 (35.2) 399 (45.4) 

Animal farming    
Yes 113 (39.9) 330 (55.4) 443 (50.4) 
No 170 (60.1) 266 (44.6) 436 (49.6) 

Beef cattle    
Yes 76 (26.9) 233 (39.1) 309 (35.2) 
No 207 (73.1) 363 (60.9) 570 (64.8) 

Dairy cattle    
Yes 8 (2.8) 46 (7.7) 54 (6.1) 
No 275 (97.2) 550 (92.3) 825 (93.9) 

Hogs    
Yes 19 (6.7) 114 (19.1) 133 (15.1) 
No 264 (93.3) 482 (80.9) 746 (84.9) 

Poultry    
Yes 40 (14.1) 60 (10.1) 100 (11.4) 
No 243 (85.9) 536 (89.9) 779 (88.6) 

Current farming: crops and/or animals    
Neither crop nor animal farming 140 (49.5) 165 (27.7) 305 (34.7) 
Crop farming only 30 (10.6) 101 (16.9) 131 (14.9) 
Animal farming only 49 (17.3) 45 (7.6) 94 (10.7) 
Both crop and animal farming 64 (22.6) 285 (47.8) 349 (39.7) 

Number of types of farm animals    
0 type 179 (63.3) 284 (47.7) 463 (52.7) 
1 type 71 (25.1) 202 (33.9) 273 (31.1) 
2 + types 33 (11.7) 110 (18.5) 143 (16.3) 

Season of dust collection    
Spring, March 21–June 20 78 (27.6) 145 (24.3) 223 (25.4) 
Summer, June 21–September 20 74 (26.1) 191 (32) 265 (30.1) 
Fall, September 21–December 20 56 (19.8) 133 (22.3) 189 (21.5) 
Winter, December 21–March 20 75 (26.5) 127 (21.3) 202 (23.0) 

Current asthma    
Cases 99 (35.0) 234 (39.3) 333 (37.9) 
Noncases 184 (65.0) 362 (60.7) 546 (62.1) 

Note: AHS, Agricultural Health Study; EU, endotoxin units; SD, standard deviation; SE, standard error. 
aPercentages may not add to exactly 100 due to rounding. 
bEndotoxin was measured using the Limulus amebocyte lysate assay. 
cA field technician rated home condition at the time of the home visit using a five-point scale that we dichotomized into higher vs. lower. Two samples from North Carolina with miss-
ing home condition were removed for any analysis considering home condition. 
dTwo samples (one from North Carolina and one from Iowa) with missing carpeting status were removed for any analysis considering the carpeting. Smooth floor represents no car-
peted (n = 54) or no carpet sampled (n = 3) group. 
eCurrent defined as past 12 months. Some farmers are not currently doing farm work, and some spouses are currently doing farm work but are not farmers.  
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Many OTUs were differentially abundant in relation to environ-
mental exposures (Table 3). Mean abundances differed significantly 
in 94 OTUs for the presence of an indoor dog (vs. no indoor dog), 45 
OTUs for home condition (higher vs. lower), and 23 OTUs for winter 
(vs. other seasons combined) (Table S5). Notably, many more OTUs 
showed differential abundance for current farming: 388 for crop 
farming vs. no crop farming and 425 for animal farming vs. no ani-
mal farming These amounted to 534 unique OTUs: 109 related to 
crop farming only, 146 to animal farming only, and 279 to both crop 
and animal farming (Table S6). When we analyzed the four-level 
combined farming variable (based on crop and animal farming), we 
found significant differential abundance for 631 OTUs (Table S7) af-
ter adjusting for presence of an indoor dog, home condition, and win-
ter. Summary of number of OTUs differentially abundant by the 
exposures at the phylum level can be found in Table 3 and Figure 2. 
Among these OTUs, the top phylum, based on the number of signifi-
cant OTUs within the phylum, was Proteobacteria, followed by 
Firmicutes and Actinobacteria. When we assessed differences in 
mean relative abundance of the families to which the 631 OTUs 
belong according to the four categories of current farming (no farm-
ing, crop farming only, animal farming only, both crop and animal 
farming), the top five families were Moraxellaceae, Clostridiaceae, 
Prevotellaceae, Propionibacteriaceae, and Bacillaceae (Table S8). Of 
interest, there were two phyla, Chloroflexi and Verrucomicrobia, in 
which OTUs were not related to other factors (presence of an indoor 
dog, home condition, or winter), but were significantly associated 
with current farming (Table 3). The phylum Cyanobacteria contained 
OTUs associated with home condition, winter, and crop and ani-
mal farming, but not related to the presence of a dog. Some OTUs 
in Fusobacteria were associated with the presence of an indoor 

dog and home condition, but not related to either crop or animal 
farming. 

Some OTUs that were differentially abundant for presence of 
an indoor dog, home condition, winter, crop farming, or animal 
farming were unique to each exposure: 71 unique to indoor dog 
exposure, 10 unique to home condition, and 11 unique to winter 
vs. other seasons combined (Table S9). 

Many OTUs were uniquely related to either crop farming or 
animal farming but not related to other exposures (Table S10). 
Unique to crop farming were 103 OTUs: 101 assigned to 49 fami-
lies within eight phyla, and two unassigned. The top two phyla 
uniquely related to crop farming were Proteobacteria (36%) and 
Actinobacteria (22%). Of the 49 families, the top five families 
based on the number of significantly differentially abundant OTUs 
within the family were Sphingomonadaceae, Xenococcaceae, 
Micromonosporaceae, Sphingobacteriaceae, and Nostocaceae. 
All five families were less abundant in samples from homes of partici-
pants doing crop farming than in those with no crop farming exposure 
(Table 4). There were 133 OTUs unique to animal farming, including 
130 assigned to 71 families within 7 phyla, and 3 unassigned (Table 
S10). For animal farming, the top two phyla uniquely related to this 
exposure were Firmicutes (28%) and Proteobacteria (22%). Of the 71 
families uniquely related to animal farming, the top five families were 
Bacillaceae, Bacteroidaceae, Xanthomonadaceae, Streptococcaceae, 
and Lactobacillaceae (Table 4). Of the five, three (Bacillaceae, 
Xanthomonadaceae, and Lactobacillaceae) were more abundant 
in house dust from individuals working with farm animals than 
from those not working with farm animals; the other two were 
less abundant in samples from those doing animal farming. There 
were 254 OTUs differentially abundant for crop farming (vs. no 

Table 2. Associations between alpha diversity (Shannon index) and exposures. 

Environmental and other factors 
Yes No 

pe n Alpha diversitya n Alpha diversity   
State of residence (North Carolina = Yes; Iowa = No) 283 4:46 ± 0:79 596 4:64 ± 0:72 0.001 
Gender (male = Yes; female = No) 517 4:56 ± 0:80 362 4:62 ± 0:68 0.219 
Presence of indoor pets, past 12 months — — — — — 

Dogs or cats (vs. neither dogs nor cats) 371 4:63 ± 0:74 508 4:54 ± 0:75 0.081 
Dogs (vs. no dogs) 270 4:67 ± 0:71 609 4:54 ± 0:76 0.020 
Cats (vs. no cats) 182 4:62 ± 0:73 697 4:57 ± 0:76 0.410 

Home condition, higher categoryb (vs. lower category) 682 4:54 ± 0:76 195 4:74 ± 0:70 5.8E-04 
Carpeting, carpeted surface (vs. smooth floor) 820 4:57 ± 0:76 57 4:73 ± 0:65 0.134 
Currentc farm exposure — — — — — 

Living on a farm (vs. not living on a farm) 727 4:59 ± 0:76 152 4:54 ± 0:71 0.402 
Crop farming (vs. no crop farming) 480 4:64 ± 0:74 399 4:51 ± 0:75 0.011 
Animal farming (vs. no animal farming) 443 4:64 ± 0:71 436 4:47 ± 0:77 9.0E-06 
Beef cattle (vs. no beef cattle) 309 4:67 ± 0:73 570 4:53 ± 0:76 0.009 
Dairy cattle (vs. no dairy cattle) 54 4:90 ± 0:54 825 4:56 ± 0:76 0.001 
Hogs (vs. no hogs) 133 4:67 ± 0:71 746 4:57 ± 0:75 0.137 
Poultry (vs. no poultry) 100 4:73 ± 0:75 779 4:56 ± 0:75 0.038 
Number of types of farm animals — — — — — 

0 type — 4:50 ± 0:76  — 0.003f 

1 type — 4:66 ± 0:72 — — — 
2 + types — 4:71 ± 0:73 — — — 

Season of dust collectiond — — — — — 
Spring, March 21–June 20 (vs. other seasons combined) 223 4:54 ± 0:86 656 4:60 ± 0:71 0.327 
Summer, June 21–September 20 (vs. other seasons combined) 265 4:53 ± 0:78 614 4:60 ± 0:73 0.201 
Fall, September 21–December 20 (vs. other seasons combined) 189 4:52 ± 0:64 690 4:60 ± 0:78 0.224 
Winter, December 21–March 20 (vs. other seasons combined) 202 4:75 ± 0:65 677 4:53 ± 0:77 3.1E-04 

Current asthma (cases vs. noncases) 333 4:58 ± 0:08 546 4:58 ± 0:72 0.99 
Note: Alpha diversity refers to bacterial diversity within each sample. We used rarefaction with the minimum sequencing depth across all samples (n = 8,182). 
aAverage ± standard deviation of Shannon index. 
bA field technician rated home condition at the time of the home visit using a five-point scale that we dichotomized into higher vs. lower. 
cCurrent defined as past 12 months. 
dNo category represents the remaining three seasons combined except for the season of interest. For example, samples collected during summer, fall, or winter were assigned to No 
group for the analysis of spring; samples collected during spring, fall, or winter were assigned to No group for the analysis of summer. 
ep-Value from linear regression model examining associations of an exposure (predictor) with the bacterial diversity (Shannon index; response variable). 
fp-Value for linear trend from regression using the number of types of animals (ordered) as the predictor and the Shannon index as the response variable.  
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crop farming) as well as animal farming (vs. no animal farming) 
that were not related to the other nonfarm exposures, including 
presence of an indoor dog, home condition, and winter vs. other 
seasons combined (Table S11). 

Endotoxin levels were higher in Iowa than North Carolina and 
in homes rated in the lower home condition category. Endotoxin 
concentrations were higher in homes with indoor pets or occupants 
doing crop or animal farming than in homes without these expo-
sures (Table S12). After adjusting for the nonfarm factors signifi-
cantly associated with endotoxin in our data (presence of indoor 
pets and home condition), the positive associations between endo-
toxin and current farming remained significant (p-value = 0:005 
for crop farming; p-value = 9:5 × 10−5 for animal farming) (Table 
S13). There was a trend for increasing Shannon index (alpha diver-
sity) across quartiles of endotoxin (p-value for linear trend = 0:009) 
(Table S14). We found 257 OTUs within 10 phyla that increased 
across endotoxin quartiles and 452 OTUs within 17 phyla that 
decreased across endotoxin categories (Table S15 and Table 
S16). Of note, 82 of the 257 (32%) positively associated OTUs, 
and 105 (23%) of the 452 negatively associated OTUs were 
from Proteobacteria, a major group of Gram-negative bacteria 
(Figure S1). None of the positively associated OTUs were from 
Cyanobacteria, which stain Gram-negative but differ from fecal 
related Gram-negative bacteria in the lipopolysaccharide in 
their cell wall (Stewart et al. 2006). 

One of potential factors reported to be associated with endo-
toxin is carpeting (Douwes et al. 2000; Mendy et al. 2018). In our 
study, nearly all of our samples were collected from floors with car-
pet: 94% overall, with little difference between Iowa (95%) and 
North Carolina (91%). The mean Shannon index was slightly lower 
in samples from carpeted surface (4.57, SD = 0:76) compared 

with samples from smooth floor (4.73, SD = 0:65), but the 
difference was not significant (p = 0:13). Although there was no 
significant association between diversity and carpeted surface vs. 
smooth floor, we tested whether associations differed when adding 
a term for carpet to the adjusted models and they did not: for living 
on a farm, p = 0:525 before and p = 0:518 after adjustment; 
for crop farming, p = 0:006 before and 0.006 after adjustment; 
and for animal farming, p = 3:4 × 10−5 before and p = 4:8 × 
10−5 after adjustment. Endotoxin levels were higher in dust 
samples collected from carpet [Geometric Mean ðGMÞ= 39:2; 
Geometric Standard Deviation ðGSDÞ= 3:8] vs. smooth floor 
(GM = 30:0; GSD = 7:1), but the difference was not statistically 
significant (p = 0:15). Given the nearly universal presence of carpet 
in the room from which we collected the dust sample, we were 
underpowered to identify associations with carpeting compared to 
the larger NHANES (National Health and Nutrition Examination 
Survey) study of endotoxin levels (n = 6,963). 

Discussion 
To our knowledge, this is the first large-scale study to examine associ-
ations between the house dust microbiota and both farm and nonfarm 
exposures using 16S rRNA gene amplicon sequencing in an agricul-
tural population. Given the substantial body of literature on both the 
environmental determinants and health effects of house dust endo-
toxin, we also examined associations between house dust endotoxin 
and house dust microbiota. Our findings suggest that the indoor 
microbiota differs between dust samples from homes of individuals 
with current farming exposure and those from individuals who are 
not currently farming, with additional variation depending on specific 
farming types. Specifically, crop and animal farming were associated 

Table 3. Number of operational taxonomic units (OTUs) in each phylum showing significant differential abundance [false discovery rate ðFDRÞ< 0:05] for 
each of several exposures. 

Phylum 

Exposures 

Total 

Presence of 
an indoor 

dog  
(vs. no  

indoor dog) 

Home  
condition  

(higher vs. 
lower)a 

Winter  
(vs. other  
seasons  

combined) 

Crop farming  
(vs. no crop 

farming) 

Crop farming  
(vs. no crop 
farming)b 

Animal  
farming  

(vs. no animal 
farming) 

Animal  
farming  

(vs. no animal 
farming)c 

Both crop  
and animal  
farming,d 

unadjusted 

Both crop  
and animal  

farming, 
adjustede   

Proteobacteria   24   14   8   98   37   91   31   163   159   376 
Firmicutes   32   15   6   77   4   116   37   152   146   315 
Actinobacteria   7   5   0   73   23   76   26   123   122   239 
Bacteroidetes   23   6   2   77   13   90   25   112   114   237 
Cyanobacteria   0   3   4   30   18   12   0   31   30   52 
Chloroflexi   0   0   0   14   0   18   4   21   21   34 
Acidobacteria   0   0   1   5   4   6   5   11   11   28 
Fusobacteria   5   2   0   0   0   0   0   1   0   14 
Verrucomicrobia   0   0   0   2   1   3   2   5   4   13 
[Thermi]   1   0   0   0   0   1   0   2   3   12 
TM7   1   0   0   3   0   3   0   4   4   11 
Euryarchaeotaf   0   0   0   2   0   2   0   3   3   5 
Tenericutes   1   0   0   0   0   0   0   0   0   4 
Gemmatimonadetes   0   0   0   0   0   0   0   0   0   4 
FBP   0   0   0   1   0   1   0   2   2   3 
Armatimonadetes   0   0   0   1   1   0   0   1   1   3 
Crenarchaeotaf   0   0   0   0   0   0   0   1   1   2 
Planctomycetes   0   0   0   0   0   0   0   1   1   1 
Phylum unassigned   0   0   2   5   2   6   3   9   9   32 
Total   94   45   23   388   103   425   133   642   631   1385 
Note: OTUs that show significant differential abundance were identified by using analysis of composition of microbiomes (ANCOM). 
aA field technician rated home condition at the time of the home visit using a five-point scale that we dichotomized into higher vs. lower for analysis. 
bUniquely associated with crop farming (vs. no crop farming): no univariate association with other factors: presence of an indoor dog (vs. no indoor dog), home condition (higher vs. 
lower), winter (vs. other seasons combined), and animal farming (vs. no animal farming). 
cUniquely associated with animal farming (vs. no animal farming): no univariate association with other factors: presence of an indoor dog (vs. no indoor dog), home condition (higher 
vs. lower), winter (vs. other seasons combined), and crop farming (vs. no crop farming). 
dFour-level current farming variable: neither crop nor animal farming, crop farming only, animal farming only, both crop and animal farming. 
eFour-level current farming variable: neither crop nor animal farming, crop farming only, animal farming only, both crop and animal farming: after adjusting for presence of an indoor 
dog (vs. no indoor dog), home condition (higher vs. lower), and winter (vs. other seasons combined). 
fEuryarchaeota and Crenarchaeota are in the kingdom Archaea. The rest of the phyla are in the kingdom Bacteria.  
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Figure 2. Proportion of operational taxonomic units (OTUs) significantly associated [false discovery rate ðFDRÞ< 0:05] with each exposure at the phylum level. 
Pie chart shows proportions of significant OTUs assigned to each phylum in relation to each exposure. Phyla having more than one OTUs were shown in the 
pie chart. Of all OTUs (n = 1,385) in our data, there were (A) 1,353 assigned to 18 phyla, 32 OTUs unassigned. Of the 1,385 OTUs, (B) 94 within 8 phyla 
were significantly associated with presence of an indoor dog (vs. no indoor dog); (C) 45 within 6 phyla were associated with home condition (higher vs. lower); 
(D) 21 within 5 phyla and 2 unassigned were associated with winter (vs. other seasons combined); (E) 383 within 12 phyla and 5 unassigned were associated 
with crop farming (vs. no crop farming); (F) 419 within 12 phyla and 6 unassigned were associated with animal farming (vs. no animal farming); and (G) 622 
within 15 phyla and 9 unassigned were associated with both crop and animal farming (four-level combined variable) adjusted for presence of an indoor dog 
(vs. no indoor dog), home condition (higher vs. lower), and winter (vs. other seasons combined).  
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with higher bacterial diversity. We identified specific OTUs that were 
higher or lower in abundance in the homes of participants who are 
currently farming than in homes of unexposed participants. We iden-
tified associations between specific OTUs and endotoxin levels, 
which had the expected positive relationship with current farming. 

Most studies exploring determinants underlying the indoor micro-
biota have been conducted in nonfarming populations. These studies 
have reported that occupant-related factors such as the ratio of 

females to males in households (Barberán et al. 2015) and the pres-
ence of indoor pets (Barberán et al. 2015; Dannemiller et al. 2016) 
have greater influence on the indoor bacterial communities than out-
door sources such as geographic (Adams et al. 2014; Barberán et al. 
2015) or seasonal factors (Adams et al. 2014; Weikl et al. 2016). We 
confirmed the previously reported associations between indoor bacte-
rial communities and indoor sources, including presence of an indoor 
dog (Barberán et al. 2015; Dannemiller et al. 2016) and home 

Table 4. Relative abundance of families including at least two significant operational taxonomic units (OTUs) [false discovery rate ðFDRÞ< 0:05] uniquely 
associated with either crop or animal farming. 

Phylum Family 

Relative abundance 
No. of OTUs in family Exposure 

Directiona Yes (%) No (%) Total 
No.  

significant 

No. greater  
relative abundance  

in the exposed groupb   

Exposure: crop farming (Yes) vs. no crop farming (No)  
Proteobacteria Sphingomonadaceae   0.120   0.202 -   44   9   0 
Cyanobacteria Xenococcaceae   0.035   0.086 -   13   6   0 
Actinobacteria Micromonosporaceae   0.174   0.252 -   11   6   0 
Bacteroidetes Sphingobacteriaceae   0.109   0.155 -   25   6   0 
Cyanobacteria Nostocaceae   0.033   0.088 -   7   5   0 
Bacteroidetes Cytophagaceae   0.121   0.092 +   39   4   2 
Proteobacteria Acetobacteraceae   0.024   0.047 -   20   4   0 
Actinobacteria Actinomycetales (O)c   0.024   0.047 -   18   4   0 
Proteobacteria Caulobacteraceae   0.048   0.077 -   14   4   0 
Proteobacteria Methylocystaceae   0.031   0.056 -   8   4   0 
Bacteroidetes Chitinophagaceae   0.055   0.076 -   24   3   3 
Proteobacteria Burkholderiaceae   0.027   0.049 -   6   3   1 
Acidobacteria Acidobacteriaceae   0.012   0.031 -   4   3   0 
Firmicutes Bacillaceae   0.222   0.387 -   27   2   0 
Actinobacteria Gaiellaceae   0.041   0.038 +   12   2   1 
Proteobacteria Oxalobacteraceae   0.099   0.141 -   9   2   0 
Cyanobacteria Chlorophyta (O)c   0.049   0.072 -   7   2   0 
Actinobacteria Solirubrobacteraceae   0.034   0.045 -   4   2   0 
Phylum unassigned Family unassigned   0.039   0.032 +   32   2   1 
Exposure: animal farming (Yes) vs. no animal farming (No)  
Firmicutes Bacillaceae   0.168   0.116 +   27   8   8 
Bacteroidetes Bacteroidaceae   0.811   1.208 -   25   7   2 
Proteobacteria Xanthomonadaceae   0.057   0.040 +   26   5   5 
Firmicutes Lactobacillaceae   0.707   0.682 +   13   4   4 
Firmicutes Streptococcaceae   0.709   0.940 -   11   4   1 
Actinobacteria Acidimicrobiales (O)c   0.057   0.041 +   7   4   4 
Firmicutes Ruminococcaceae   0.046   0.014 +   46   3   3 
Bacteroidetes Flavobacteriaceae   0.207   0.174 +   33   3   3 
Bacteroidetes Prevotellaceae   0.041   0.015 +   27   3   3 
Actinobacteria Nocardioidaceae   0.316   0.247 +   25   3   3 
Bacteroidetes Chitinophagaceae   0.033   0.028 +   24   3   3 
Firmicutes Aerococcaceae   0.209   0.128 +   16   3   3 
Proteobacteria Comamonadaceae   0.087   0.060 +   12   3   3 
Firmicutes Planococcaceae   0.063   0.041 +   8   3   3 
Proteobacteria Erythrobacteraceae   0.064   0.045 +   7   3   3 
Actinobacteria Streptomycetaceae   0.074   0.047 +   4   3   3 
Firmicutes Lachnospiraceae   0.016   0.009 +   60   2   2 
Firmicutes [Tissierellaceae]   0.326   0.467 -   27   2   0 
Firmicutes Clostridiales (O)c   0.028   0.012 +   25   2   2 
Bacteroidetes Sphingobacteriaceae   0.055   0.040 +   25   2   2 
Proteobacteria Acetobacteraceae   0.072   0.119 -   20   2   0 
Proteobacteria Caulobacteraceae   0.189   0.152 +   14   2   2 
Chloroflexi JG30-KF-CM45 (O)c   0.039   0.029 +   13   2   2 
Proteobacteria Alcaligenaceae   0.061   0.044 +   9   2   2 
Acidobacteria iii1–15 (O)c   0.058   0.048 +   8   2   2 
Acidobacteria Ellin6075   0.041   0.031 +   8   2   2 
Actinobacteria Intrasporangiaceae   0.117   0.068 +   7   2   2 
Chloroflexi Ellin6529 (C)c   0.037   0.031 +   5   2   2 
Actinobacteria Cellulomonadaceae   0.128   0.102 +   3   2   2 
Actinobacteria Promicromonosporaceae   0.041   0.022 +   2   2   2 
Phylum unassigned Family unassigned   0.243   0.180 +   32   3   3 
Note: Relative abundance %ð Þ of families in a sampleð Þ= sequence counts of significant OTUs in the family

total sequence counts � 100 The OTUs were not related to other factors, including presence of an indoor dog, 
home condition, and winter (vs. other seasons combined). 
aDirection indicates increased ( + ) or decreased (-) relative abundance in a group exposed to a farm factor crop or animal compared to a group unexposed to the farm factor (NO). 
bHigher relative abundances in the farming group (Yes) than the no farming group (No). For example, higher relative abundance in crop farming group vs. no crop farming group. 
cFor unassigned family, we noted assigned class with (C). When both family and class were unassigned, we noted assigned order with (O).  
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condition (Dunn et al. 2013); we had no data on gender ratio. In addi-
tion, bacterial communities in dust samples collected from the bed-
rooms of participants who were currently farming differed from those 
in dust samples collected from the bedrooms of participants not cur-
rently farming. In a study of 86 children’s homes, Birzele and coau-
thors reported that living on a farm can affect the house dust 
microbiota (Birzele et al. 2017). Compared to that study where only 
13% lived on a farm, most of our participants had some farm expo-
sure. Nearly everyone (n = 844; 96%) reported ever having done farm 
work. The remaining 35 who reported no prior farm work were all 
female, including 34 who are spouses of farmers. The vast majority of 
individuals (83%) reported currently living on a farm. The other 152 
who reported not currently living on a farm include 54 who nonethe-
less reported current farming. Given the older age of many of our par-
ticipants, it is perhaps not surprising that a small proportion are no 
longer living on the farm. Stein and coauthors reported that indoor 
bacterial communities differed between two populations practicing 
either traditional or industrialized farming based on analysis of one 
pooled sample from each group (Stein et al. 2016). Although it is pos-
sible that these bacteria enter the home via airborne spread from the 
adjacent farm, they may also be carried into the home on the skin or 
clothing of the farming occupants. 

At the phylum level, the top two phyla associated with current 
farming in our study have been implicated in human health: 
Proteobacteria and Firmicutes. Proteobacteria, a phylum of Gram- 
negative bacteria, includes bacteria found in the normal human 
microbiota as well as pathogens such as Salmonella, Vibrio, and 
Helicobacter. Firmicutes, which are Gram-positive, comprise the 
largest portion of human gut microbiota (Ley et al. 2006) and have 
been associated with obesity and other health outcomes (Turnbaugh 
et al. 2006). 

Many earlier house dust studies (Liebers et al. 2008) measured 
endotoxin concentration as a proxy for bacterial exposures, but 
how endotoxin levels relate to the house dust microbiota is 
unknown. We confirmed previously reported associations of house 
dust endotoxin levels with presence of indoor pets, better home 
condition, geographical region, and farm exposures (Chen et al. 
2012; Giovannangelo et al. 2007; Holst et al. 2015; Waser et al. 
2004), but also examined how endotoxin relates to the microbiota. 
Many OTUs from Proteobacteria were positively associated with 
the endotoxin, which can be expected, given that Proteobacteria is 
a major group of Gram-negative bacteria. 

We recognize the possibility that the farmer’s spouses (99.5% 
female) in our study who reported that they were not farming may 
have had exposure to farming from their spouse’s work. This would 
tend to attenuate associations between bacterial diversity and farm-
ing. Because our survey did not include questions regarding current 
farming of participants’ spouses, we cannot address this question 
directly. 

When examining associations of bacterial communities with 
farm exposures, we did not adjust for state of residence (North 
Carolina vs. Iowa) because there were substantial differences in 
current farming exposures by state. Of the 596 participants in 
Iowa, 85% reported living on a farm, 65% reported crop farming, 
55% reported animal farming, and 72% reported either crop or 
animal farming (Table S1). Of the 283 participants in North 
Carolina, 78% reported living on a farm, 33% reported crop 
farming, 40% reported animal farming, and 51% reported either 
crop or animal farming. Thus, instead of adjusting for state, we 
performed a stratified analysis; we found similar associations 
between exposures and bacterial communities in Iowa and North 
Carolina (Table S1). 

Our study has other limitations. We have only a single sample 
of house dust. Thus, we assume the samples reflect the usual 
home condition. We are unable to quantify absolute levels of 

bacteria in dust; however, we were able to quantify relative abun-
dances of bacterial taxa. Our rating of the home condition was 
based on a five-level scale using an instrument from a previous 
NIEHS study (Arbes et al. 2003). This rating is subjective, and 
we did not assess interrater reliability. 

A strength of this study is the large size compared to sizes, ranging 
between 86 and 196, of most earlier studies (Birzele et al. 2017; 
Dannemiller et al. 2016) of indoor microbiota using high-throughput 
sequencing methods, except for one larger study (Barberán et al. 
2015) with 1,142 indoor dust samples that examined only nonfarm 
exposures. An additional strength is our ability to examine the contri-
bution of both farm and nonfarm exposures. We could assess both 
farm exposures, with detailed information on two types of farming 
(crop and/or animal farming) and four types of farm animals, and non-
farm exposures that have been related to indoor microbiota, including 
the presence of dogs or cats inside the home and home condition 
assessed by an objective observer. We also included two outdoor fac-
tors: state of residence and season of dust collection. Endotoxin expo-
sure assessment was conducted with high levels of quality assurance. 
Although we measured only bedroom dust, most individuals spend a 
large portion of their day in the bedroom, making this a highly rele-
vant single location to sample. 

Many of our results are reassuringly consistent with what we pre-
dicted. For example, more OTUs from Cyanobacteria, a phylum of 
photosynthetic bacteria that exist in moist soil, were associated with 
crop farming than with animal farming. Two phyla containing OTUs 
associated with current farming, but not with other factors, were 
Chloroflexi, abundant in agricultural soil (Chapagain and Good 
2015), and Verrucomicrobia, mostly found in freshwater and soil. 
Moreover, two OTUs assigned to the genus Fusobacterium were 
associated only with presence of an indoor dog and home condition, 
and not with farming or other factors. Bacteria from this genus are 
found in most dogs and cats; they can cause severe infections after a 
dog bite. Of the bacterial families showing elevated relative abundan-
ces in relation to animal farming, some are related to animals in the lit-
erature. For example, the family Bacillaceae includes the species 
Bacillus anthracis that causes anthrax, a disease associated with ani-
mal exposures (Spencer 2003). Lactobacillaceae is found in dairy and 
grain products, water, and soil. 

Conclusions 
In this agricultural population, we found that current farming, 
including both crop and animal farming, presence of an indoor 
dog, and home condition, were significant predictors of the com-
position of the house dust microbiota. Current farming was asso-
ciated with the microbiota inside homes, even after adjusting for 
indoor environmental factors, including pets and home condition. 
Many taxa related to current farming were also related to house 
dust endotoxin, a widely studied surrogate of bacterial exposure 
that has been related to various health outcomes. These results sug-
gest that indoor microbial signatures might serve as markers for 
unique and specific exposures to microbes associated with crops or 
farm animals that cannot be obtained by simply asking individuals 
about these farm exposures. This comprehensive investigation of 
factors that predict the bacterial communities inside homes, includ-
ing current crop and animal farming, and predictors common to 
both farming and nonfarming populations, is an essential step to-
ward understanding the impact of exposure to the indoor dust micro-
biota on human health. 
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